Twoja przeglądarka nie obsługuje JavaScript!
Ucz się szybciej
Testy
Fiszki
Notatki
Zaloguj
Fiszki
Egzamin MWS
Test w formie fiszek MWS
Ilość pytań:
75
Rozwiązywany:
8096 razy
Jeżeli X1....Xn jest próbą losową z rozkładu N (µ,1) z nieznanym parametrem µ, to statystyką jest
długość najdłuższego niemalejącego podciągu ciągu (X1....Xn)
numer pierwszego największego elementu ciągu (X1....Xn)
P(max(X1...Xn)>1)
długość najdłuższego niemalejącego podciągu ciągu (X1....Xn)
numer pierwszego największego elementu ciągu (X1....Xn)
Logarytmiczna funkcja wiarygodności może być interpretowana jako łączna funkcja gęstości prawdopodobieńtwa dla próby losowej
Logarytmiczna funkcja wiarygodności może przyjmować wartości większe niż funkcja wiarygodności
Funkcja wiarygodności może być interpretowana jako łączna funkcja gęstości prawdopodobieństwa dla próby losowej
Funkcja wiarygodności może być interpretowana jako łączna funkcja gęstości prawdopodobieństwa dla próby losowej
W teorii testów statystycznych
każda hipoteza, która nie jest prosta jest hipotezą złożoną
Każda hipoteza złożona jest sumą skończonej liczby hipotez prostych
hipoteza zerowa musi być hipotezą prostą
każda hipoteza, która nie jest prosta jest hipotezą złożoną
może być mniejsze niż 1/√2
może być równe √2
może być wieksze niż √2
może być mniejsze niż 1/√2
może być równe √2
długość najdłuższego niemalejącego podciągu (X1,...Xn)
numer pierwszego najwiekszego elementu ciągu (X1,... Xn)
P(max(X1,...Xn)>1)
długość najdłuższego niemalejącego podciągu (X1,...Xn)
numer pierwszego najwiekszego elementu ciągu (X1,... Xn)
w przedziale[1,3] leży 25% danych
w przedziale (4,6]leży 25% danych
nie ma danych mniejszych niż1
w przedziale[1,3] leży 25% danych
w przedziale (4,6]leży 25% danych
nie ma danych mniejszych niż1
lim t->∞ F(t)=1
P(a<=X<=b)=∫(a,b) f(t) dt dla b>=a
P(-a<=X<=a) = 2*F(a)-1,dla a >0
lim t->∞ F(t)=1
P(a<=X<=b)=∫(a,b) f(t) dt dla b>=a
logarytmiczn funkcja wiarygodności może przyjmować wartości większe niż funkcja wiarygodności
Funkcja wiarygodności może być interpretowana jako łączna funkcja gestosci prawdopodobieństwa dla próby losowej
Logarytmiczna funkcja wiarygodności może być interpretowana jako łączna funkcja gęstości prwdopodobieństwa dla próby losowej
Funkcja wiarygodności może być interpretowana jako łączna funkcja gestosci prawdopodobieństwa dla próby losowej
estymatory bayesowskie konstruuje się bezpośrednio na podstawie rozkładów a priori
funkcje gęstości a priori i a posteriori mogą być równe
Rozkład a priori nie może być rozkładem jednorodnym
funkcje gęstości a priori i a posteriori mogą być równe
Jeżeli X~Unif([0,1]), to
X^2~Unif([0,1])
EX=1/2
EX^2=1/4
EX=1/2
Jeżeli funkcja M(t)=e^t^2 jest funkcją generującą momenty dla zmiennej X, to
EX^2=2
EX^3=2
EX=0
EX^2=2
EX=0
Dla każdego ciągu niezależnych zmiennych losowych X1, X2, ...Xn
V(X1+X2+...+Xn)=VX1+VX2+...+VXn
V(1-X1, X2,...Xn)>V(X1X2...Xn)
V(X1X2...Xn)=V(X1)V(X2)...V(Xn)
V(X1+X2+...+Xn)=VX1+VX2+...+VXn
Jezeli f jest rozniczkowalną funkcją gestości prawdopodobienstwapewnej zmienne losowej X, to wiadomo, że
f jest ograniczona z dołu przez 0
f jest ograniczona z góry przez 1
f może się nigdzie nei zerowac
f jest ograniczona z dołu przez 0
f może się nigdzie nei zerowac
Test X^2 ma zastosowanie w przypadku
badania niezależności rozkładów
badania jednorodności prób
badania zgodności rozkładu dla zmniennych dyskretnych
badania niezależności rozkładów
badania jednorodności prób
badania zgodności rozkładu dla zmniennych dyskretnych
Jeśli H0 i H1 są dwiema hipotezami prostymi, to najmocniejszy test na pewnym poziomie istotności 0
może nie istnieć
może nie wymagać randomizacji
może być testem randomizowanym
może nie wymagać randomizacji
może być testem randomizowanym
Jeśli p-wartość pewnego testu wynosi 0.1 to
nie da się określić mocy tego testu bez dodatkowych informacji
hipoteza zerowa była by odrzucona przy poziomie istotności [nie widze] a=0.3
hipoteza zerowa była by odrzucona przy poziomie istotności (nie widze) alfa=0.01
nie da się określić mocy tego testu bez dodatkowych informacji
hipoteza zerowa była by odrzucona przy poziomie istotności [nie widze] a=0.3
Jeśli X~N(µ,õ^2), to
X^2~N(µ^2,õ^4)
zmienna Y=µ+X ma rozkład normalny
zmienna Y=õ^2 + X ma rozkład normalny
zmienna Y=µ+X ma rozkład normalny
zmienna Y=õ^2 + X ma rozkład normalny
zbiega według rozkładu do x^2 r+1
zbiega według rozkładu do x^2 r-1
zbiega wedługo rozkładu do x^2 r
zbiega według rozkładu do x^2 r-1
jeśli rozkład a priori jest rozkładem jednostajnym , to rozkład a posteriori może być rozkładem beta
jeśli rozkład a priori jest rozkładem jednostajnym , to rozkład a posteriori też może być rozkładem jednostajnym
jeśli rozkład a priori jest rozkładem gamma, to rozkład a posteriori też może być rozkładem gamma
jeśli rozkład a priori jest rozkładem jednostajnym , to rozkład a posteriori może być rozkładem beta
jeśli rozkład a priori jest rozkładem jednostajnym , to rozkład a posteriori też może być rozkładem jednostajnym
jeśli rozkład a priori jest rozkładem gamma, to rozkład a posteriori też może być rozkładem gamma
50% danych ma wartość niewiekszą niż 4
przynajmniej jedna wartość wpada w przedział (7.5,8.5)
trzeci kwantyl z danych jest równy 7,5
50% danych ma wartość niewiekszą niż 4
przynajmniej jedna wartość wpada w przedział (7.5,8.5)
Pokaż kolejne pytania
Powiązane tematy
Inne tryby
Nauka
Test
Powtórzenie