Fiszki

infa wstępny

Test w formie fiszek
Ilość pytań: 104 Rozwiązywany: 4653 razy
W pewnym hipotetycznym binarnym systemie zmiennoprzecinkowym zakres danych ujemnych wynosi < −b, −a >, chcemy zapisać liczbę˛ c, która jest liczbą mniejszą od −b i która ma nieskończone rozwinięcie. W związku tym zastępujemy ją najbliższą liczbą, którą da się zapisać w tym systemie, czyli liczbą −b. Z jakim błędem numerycznym mamy tutaj do czynienia:
Błędem nadmiaru
Błędem obcięcia
Błędem zaokrąglenia
Błędem zaokrąglenia
Warunkiem koniecznym i wystarczającym zbieżności metod iteracyjnych prostych (takich jak metoda Jacobiego czy metoda Gaussa-Seidla) rozwiązywania układów równań liniowych:
Promień spektralny macierzy iterowanej w danej metodzie jest zawsze wiekszy od 1
Promien spektralny macierzy iterowanej w danej metodzie jest zawsze mniejszy od 1
Promien spektralny macierzy iterowanej w danej metodzie jest zawsze mniejszy od 1
Do metod nazywanych metodami dokładnymi rozwiązywania układów równań liniowych zalicza sie:
Eliminacja Gaussa
Metoda Cramera
Eliminacja Jordana
Metoda rozkładu LU
Eliminacja Gaussa
Metoda Cramera
Eliminacja Jordana
Metoda rozkładu LU
Które z poniżej wymienionych zagadnień numerycznych wykorzystują właściwości przybliżania funkcji wielomianem interpolującym:
Metoda Siecznych, Metoda Stycznych szukania miejsc zerowych funkcji
Obliczanie całki oznaczonej funkcji za pomocą kwadratur Newtona-Cotesa
metoda kwadratury prostej
Obliczanie całki oznaczonej funkcji za pomocą kwadratur Newtona-Cotesa
metoda kwadratury prostej
Macierz Hilberta osiąga wysokie wartości współczynnika uwarunkowania (ang. Condition number) na tej podstawie możemy stwierdzić, że:
Macierz Hilberta jest zawsze diagonalnie dominująca
Macierz Hilberta jest źle uwarunkowana
Macierz Hilberta jest dobrze uwarunkowana
Macierz Hilberta jest źle uwarunkowana
Wielomiany sklejane (ang. spline) trzeciego stopnia muszą spełniać następujące warunki w punktach sklejeń
Ciagłość drugiej pochodnej funkcji interpolującej
Ciągłość pierwszej pochodnej funkcji interpolującej
Przechodzenie funkcji interpolującej przez węzły interpolacji
Ciagłość drugiej pochodnej funkcji interpolującej
Ciągłość pierwszej pochodnej funkcji interpolującej
Przechodzenie funkcji interpolującej przez węzły interpolacji
Należy wskazać zdania prawdziwe dotyczące zagadnienia interpolacji wielomianowej z wykorzystaniem jednomianów (tzw bazy naturalnej):
Ma zdecydowanie lepsze właściwości obliczeniowe niż metoda Lagrange’a
Jest to zadanie źle uwarunkowan
Jest to zadanie źle uwarunkowan
Błędy związane z ograniczeniem nieskończonego ciągu wymaganych obliczeń do skończonej liczby działań nazywamy:
Błędami obcięcia (ang. truncation errors)
Błędami nadmiaru (ang. overflow errors)
Błędami obcięcia (ang. truncation errors)
Jeśli niewielkie względne zaburzenia danych wejściowych powodują niewielkie względne zmiany wyników to wówczas
Współczynnik uwarunkowania osiąaga niskż wartość
Współczynnik uwarunkowania osiaąga wysoką wartość
zadanie jest dobrze uwarunkowane
Współczynnik uwarunkowania osiąaga niskż wartość
zadanie jest dobrze uwarunkowane
Warunkami wystarczającymi, gwarantującymi zbieżność poszukiwania miejsc zerowych funkcji f(x) metodą bisekcji są:
Pierwsza i druga pochodna mająstały znak w całym przedziale
Na ko´ncach przedziału [a,b] wartości funkcji f(x) przyjmuja˛przeciwne znaki, czyli zachodzi f(a)·f(b) < 0
Funkcja f(x) jest ciągła w przedziale domkniętym [a,b]
Na ko´ncach przedziału [a,b] wartości funkcji f(x) przyjmuja˛przeciwne znaki, czyli zachodzi f(a)·f(b) < 0
Funkcja f(x) jest ciągła w przedziale domkniętym [a,b]
Stosując algorytm stycznych poszukiwania jednokrotnego miejsca zerowego funkcji f(x) w przedziale domkniętym [a,b] w dostatecznej bliskości pierwiastka uzyskujemy zbieżność:
wykładniczą
kwadratową
kwadratową
Do całkowania numerycznego używa się m.in. kwadratur Newtona-Cotesa. Do prostych kwadratur Newtona-Cotesa należą˛:
Metoda Romberga
Wzor Simpsona.
Wzór trapezów.
Wzor Simpsona.
Wzór trapezów.
Efekt Rungego jest charakterystyczny dla następujących metod interpolacji:
Efekt Rungego jest zjawiskiem typowym dla interpolacji za pomocą wielomianów wysokich stopni przy sta łych odległosciach węzłów, np. interpolacji Lagranga dla węzłów równoodległych
Interpolacji funkcjami sklejanymi 3 stopnia dla węzłów równoodległych
Efekt Rungego jest zjawiskiem typowym dla interpolacji za pomocą wielomianów wysokich stopni przy sta łych odległosciach węzłów, np. interpolacji Lagranga dla węzłów równoodległych
Które zdania dotyczące Metody Eliminacji Gaussa rozwiązywania układów równań są prawdziwe:
przekształca macierz do postaci macierzy schodkowej(pierwsze niezerowe elementy kolejnych niezerowych wierszy, znajduja˛sie˛ w coraz dalszych kolumnach, a powstałe wiersze zerowe umieszcza sie˛ jako ostatnie)
iteracyjne przekształcenie układu równań A∗x = b z macierzą kwadratową do układu postaci Anx = bn dla k = 1..n, który oznacza równoważną postać układu równań w kolejnych etapach przekształceń
Jest to metoda dokładna
przekształca macierz do postaci macierzy schodkowej(pierwsze niezerowe elementy kolejnych niezerowych wierszy, znajduja˛sie˛ w coraz dalszych kolumnach, a powstałe wiersze zerowe umieszcza sie˛ jako ostatnie)
iteracyjne przekształcenie układu równań A∗x = b z macierzą kwadratową do układu postaci Anx = bn dla k = 1..n, który oznacza równoważną postać układu równań w kolejnych etapach przekształceń
Aby wyeliminować lub znacząco ograniczyć efekt Rungego przy zadaniu interpolacji można:
Zastosować interpolację z węłami gęciej upakowanymi na krańcach przedziału interpolacji.
Zastosować interpolację funkcjami sklejanymi zamiast metody Lagrange’a
Zastosować interpolację z węłami gęciej upakowanymi na krańcach przedziału interpolacji.
Wskaż prawidłowo sformułowane warunki w zagadnieniach początkowych Cauchy’ego (IVP) dla równania róż niczkowego y�(t) = f(t,y(t)), f : Ω ⊂R×Rn →Rn, t ∈ [a,b], y = [y1,y2,...,yn]^T
n = 2, y10 = y1(a), y20 = y2(b).
n = 2, y10 = y1(a), y20 = y2(b).
Wskaż diagramy SIMULINKa�,które prezentują równanie różniczkowe y''−2y' +7y = 3sin(5t)−1
rysunek
rysunek
Które zdania odnoszące się do metod rozwiązywania zagadnień początkowych dla równań różniczkowych są prawdziwe?
Obecnie nazwą metody Rungego-Kutty określa się rodzinę jawnych i niejawnych metod wielokrokowych, jak również pewne ich modyfikacje.
Jawne metody Rungego-Kutty 4. rzędu są metodami jednoetapowymi.
Metoda trapezowa jest jednokrokowa.
Metoda BDF (Gear’a, wstecznego różniczkowania) jest wielokrokowa, jednoetapowa, jawna - komenda ode15s.
Metoda Heuna jest jednokrokowa, dwuetapowa - blok w SIMULINK’u heun.
Metoda Adamsa-Bashforta-Moultona jest wielokrokowa, dwuetapowa - komenda ode113.
Metoda Adamsa-Bashforta jest wielokrokowa, jednoetapowa, jawna.
Metoda Milne-Simpsona jest rzadko stosowana ze względu na swój brak stabilno´sci.
Obecnie nazwą metody Rungego-Kutty określa się rodzinę jawnych i niejawnych metod wielokrokowych, jak również pewne ich modyfikacje.
Metoda trapezowa jest jednokrokowa.
Metoda BDF (Gear’a, wstecznego różniczkowania) jest wielokrokowa, jednoetapowa, jawna - komenda ode15s.
Metoda Heuna jest jednokrokowa, dwuetapowa - blok w SIMULINK’u heun.
Metoda Adamsa-Bashforta-Moultona jest wielokrokowa, dwuetapowa - komenda ode113.
Metoda Adamsa-Bashforta jest wielokrokowa, jednoetapowa, jawna.
Metoda Milne-Simpsona jest rzadko stosowana ze względu na swój brak stabilno´sci.
Numeryczne rozwiązywanie zagadnienia początkowego. Która metoda jest metodą samostartującą˛
Eulera
Geara
Rungego-Kutty
Adamsa-Bashforta-Moultona
Eulera
Rungego-Kutty
W przypadku metody Eulera zastosowanej do rozwiązywania zagadnienia początkowego dla y0(t) = f(t,y(t)),y0 = y(0) (przy założeniu braku błędu numerycznego wszystkich operacji arytmetycznych)
Bł˛ad globalny zawsze jest ró˙zny od zera.
Moze sie˛ zdarzyć, ˙ze bład rozwia˛zania jest równy zeru, ale nigdy nie ma takiej gwarancji.
bła˛d jest równy 0.
bła˛d jest równy 0.

Powiązane tematy

Inne tryby