Fiszki

Regresja logistyczna

Test w formie fiszek Regresja logistyczna
Ilość pytań: 44 Rozwiązywany: 2501 razy
Interakcje w modelach regresji logistycznej to:
wszystkie odpowiedzi są poprawne
zmiana wpływu zmiennej objaśnianej na zmienną objaśniającą w zależności od poziomu zmiennej objaśnianej.
zmiana wpływu zmiennej objaśniającej na zmienną objaśnianą w zależności od poziomu innej zmiennej objaśniającej.
zmiana wpływu zmiennej objaśniającej na inną zmienną objaśniającą w zależności od poziomu zmiennej objaśnianej.
zmiana wpływu zmiennej objaśniającej na zmienną objaśnianą w zależności od poziomu innej zmiennej objaśniającej.
Moderator to:
zmienna niezależna, która ma wpływ na siłę zależności pomiędzy inną zmienną niezależną, a zmienną zależną.
zmienna niezależna, która ma wpływ na siłę i/lub kierunek zależności pomiędzy inną zmienną niezależną, a zmienną zależną
żadna z powyższych odpowiedzi nie jest poprawna
zmienna niezależna, która ma wpływ na kierunek zależności pomiędzy inną zmienną niezależną, a zmienną zależną
zmienna niezależna, która ma wpływ na siłę i/lub kierunek zależności pomiędzy inną zmienną niezależną, a zmienną zależną
Do podstawowych sposobów oceny istotności interakcji należy:
Test Walda dla szacowanego współczynnika regresji przy zmiennej interakcyjnej.
Test Boxa-Tidwella dla szacowanego współczynnika regresji przy zmiennej interakcyjnej
Wszystkie powyższe odpowiedzi są poprawne.
Wartość statystyki Gamma dla modelów ze zmienną interakcyjną oraz bez niej.
Test Walda dla szacowanego współczynnika regresji przy zmiennej interakcyjnej.
Umowną minimalną liczbą obserwacji dla zwykłej regresji logistycznej w komórce tabeli kontyngencji jest
5
1
3
10
5
Narzędziem, którym możemy się posłużyć do zbadania zależności między zmiennymi, gdy dysponujemy małą próbą jest:
Dokładna regresja logistyczna i dokładny Test Fishera
Dokładny Test Fishera
Test Walda
Dokładna regresja logistyczna
Dokładna regresja logistyczna i dokładny Test Fishera
Problem współliniowości może powodować
niezgodne z intuicją znaki przy oszacowanych parametrach
nieoszacowanie parametrów β
zbyt niskie wartości błędów standardowych
skutek małej zmiany w zbiorze danych (na przykład usunięcie niewielkiej liczby obserwacji) może spowodować odwrócenie znaków parametrów β
niezgodne z intuicją znaki przy oszacowanych parametrach
Narzędziem, które nie może być wykorzystywane do wykrywania współliniowości jest:
tablica korelacji
statystyka c
współczynnik Pearsona
VIF
statystyka c
W oprogramowaniu SAS procedura, dzięki której możemy wnioskować o współliniowości lub jej braku to:
proc freq
proc reg
proc factor
proc means
proc reg
Duże zmiany oszacowania parametrów β przy niewielkim zmienianiu wielkości zbioru na którym budowany jest model mogą być spowodowane
wystąpieniem zjawiska overdispersion
występowaniem interakcji
brakiem liniowości w modelu
współlniniowością
współlniniowością
Oszacowanie modelu na podzbiorach nie pozwala na:
W przypadku podziału podzbiorów wg czasu wystąpienia zdarzenia (tj. zbiór w którym znajdują się zdarzenia starsze oraz zbiór w którym znajdą zdarzenia nowsze np. zdarzenia default w przypadku credit scoringu) na zbadanie stabilności modelu w czasie
na stwierdzenie występowania współlinowości w modelu, w przypadku stwierdzenia różnic w oszacowaniach parametrów
usunięcie zjawiska współliniowości w modelu
Sprawdzenia mocy predykcyjnej modelu
usunięcie zjawiska współliniowości w modelu
Najczęstszą praktyką stosowaną w celu pozbycia się niechcianej współlinniowości jest:
dodanie obserwacji do zbioru
metody czynnikowe
zostawienie wszystkich zmiennych
usunięcie jednej ze zmiennych podejrzanych o współlinniowość
usunięcie jednej ze zmiennych podejrzanych o współlinniowość
Do poradzenia sobie ze współliniowością w pewnych przypadkach stosuje się metody czynnikowe, takie jak metody głównych składowych. Jedną z wad tej metody jest:
korelacja między składowymi
zawyżenie R-kwadrat
brak interpretowalności
wystąpieniem zjawiska overdispersion
brak interpretowalności
Do metod graficznych oceny nieliniowości nie należy:
regresja lokalna
logit empiryczny
przekształcenie Boxa-Coxa
funkcja sklejana
przekształcenie Boxa-Coxa
Wielokrotna transformacja Boxa-Tidwella może prowadzić do:
utraty własności liniowości względem logitu
przeuczenia
obciążoności oszacowań parametru
łatwiejszej interpretowalności parametru przy zmiennej
przeuczenia
Jedno z założeń modelu regresji logistycznej mówi o tym, że:
Zmienne objaśniające muszą być liniowe względem siebie.
Zmienna objaśniająca w modelu musi być liniowa względem zmiennej objaśnianej
Zmienna obaśniająca w modelu musi być liniowa względem logitu zmiennej objaśnianej.
Żadne z pozostałych
Zmienna obaśniająca w modelu musi być liniowa względem logitu zmiennej objaśnianej.
Przyczyną braku liniowości w modelu regresji logistycznej są
Niesymetryczne rozkłady zmiennych
Występowanie zmiennych jakościowych.
Niespełnienie założenia o normalności rozkładu reszt.
Współliniowość zmiennych
Niesymetryczne rozkłady zmiennych
Do statystycznej weryfikacji spełnienia założenia o liniowości służy:
Analiza istotności współczynnika korelacji.
Wykres logitu emirycznego.
Test Boxa-Tidwella.
Test Boxa-Coxa.
Test Boxa-Tidwella.
Istotność wprowadzonej do modelu transformacji logarytmicznej zmiennej objaśnianej w metodzie iteracyjnej Boxa-Tidwella wskazuje na:
Wykryciu nieliniowości zmiennej transponowanej względem logitu
Konieczności prowadzenia dalszych iteracji w celu zweryfikowania założenia o liniowości
redukcję VIF modelu
Spełnienie założenia o liniowości.
Wykryciu nieliniowości zmiennej transponowanej względem logitu
Para, w której obiekt, dla którego zdarzenie nie wystąpiło (zakodowane jako 0) ma przypisane wyższe prawdopodobieństwo wystąpienia zdarzenia niż obiekt, w przypadku którego zdarzenie wystąpiło (zakodowane jako 1), określana jest jako
niezgodna
zgodna
D Somersa
Gamma
niezgodna
Wartość pola powierzchni pod krzywą ROC określa:
iloczyn par zgodnych i niezgodnych
statystyka c
wartość dewiancji
R2 Coxa i Snella
statystyka c

Powiązane tematy

#Regresja #logistyczna

Inne tryby