Nauka

Programowanie systemów rozproszonych

Wyświetlane są wszystkie pytania.
Przejdź na Memorizer+
W trybie nauki zyskasz:
Brak reklam
Quiz powtórkowy - pozwoli Ci opanować pytania, których nie umiesz
Więcej pytań na stronie testu
Wybór pytań do ponownego rozwiązania
Trzy razy bardziej pojemną historię aktywności
Wykup dostęp
Pytanie 1
Przycinanie drzew decyzyjnych stosuje się w celu:
ponownego przeprowadzenia podziału w miejscu cięcia
eliminacji zmiennych nieistotnych
uniknięcia przeuczenia i skomplikowania modelu
redukcji liczby klas
Pytanie 2
Przyjęcie metryki L1 (metryki Manhattan) sprawia, że okręgi przyjmują kształt:
elips
kardioid
trójkątów
rombów
Pytanie 3
Algorytmy genetyczne (ewolucyjne) służa generalnie do realizacji zadań:
poszukiwania reguł asocjacyjnych
optymalizacji
regresji
eksploracji danych zapisanych w chromosomach roślin i zwierząt
Pytanie 4
Rolą pojedynczego neuronu w warstwie perceptronu użytego do klasyfikacji jest:
ozpoznawanie jednej ze znanych klas w zbiorze
klasyfikacja pojedynczej cechy wejściowej
podział przestrzeni wejść na dwie półprzestrzenie
rozpoznawanie jednego przypadku w zbiorze
Pytanie 5
Technika k-krotnej walidacji krzyżowej służy do:
ustalenia optymalnego momentu przerwania uczenia modelu
uniknięcia tendencyjności w ocenie jakości modelu
wyeliminowania wzajemnych zależności między zmiennymi
klasteryzacji zbioru na k maksymalnie odległych skupień
Pytanie 6
Problem klasyfikacyjny polega na:
prognozowaniu kategorii obserwacji na podstawie jej cech
ustaleniu optymalnej liczby klas, do których należą obserwacje
poszukiwaniu przypadków najbardziej reprezentacyjnych dla klas
rozróżnianiu obserwowanych cech na wejściowe i wyjściowe
Pytanie 7
Klasyczny (perceptronowy) model neuronu posiada dwa wejścia o wagach w1=1, w2=2, na które podano odpowiednio sygnały x1=−1, x2=+1. Funkcja aktywacji jest funkcją liniową postaci y=2x. Sygnał wyjściowy neuronu wynosi:
-1
2
1
0
Pytanie 8
Oryginalna zmienna x przyjmuje trzy wartości: -2, 1, 4. Po przeprowadzeniu normalizacji tej zmiennej wg metody min-max do przedziału [0, 1], oryginalnej wartości 1 odpowiada znormalizowana wartość:
0,5
0,75
0,25
1