Fiszki

MNWC

Test w formie fiszek
Ilość pytań: 127 Rozwiązywany: 4316 razy
Który ze schematów pod prąd ma najmniejszą dyfuzyjnością numeryczną [4A_34]
różnic centralnych
schemat potęgowy
- schemat hybrydowy
schemat potęgowy
Czy symulacja komputerowa rzeczywistości to:
to samo co metoda dyskretyzacji problemu ustalonego
- zbiór węzłowych wartości zmiennych polowych, dla różnych czasów procesu
końcowy układ równań algebraicznych modelu dyskretnego
- zbiór węzłowych wartości zmiennych polowych, dla różnych czasów procesu
Który ze związków poprawnie opisuje strumień konwekcyjno-dyfuzyjnej skalarnej wielkości polowej
-f=x-vfi
-f_i=-xi+vfi
-f=-x+vfi
-f=-x+vfi
Równanie różniczkowe typu hiperbolicznego opisuje [1_21]
- przepływ w warstwie przyściennej
- nieustalone procesy zachowania pędu dla płynu nielepkiego
zasadę zachowania masy dla płynu ściśliwego
- nieustalone procesy zachowania pędu dla płynu nielepkiego
zasadę zachowania masy dla płynu ściśliwego
Które ze stwierdzeń jest fałszywe
- dyfuzja opisywana jest przez drugie a konwekcja przez pierwsze pochodne przestrzenne
dyfuzja i konwekcje opisywane są przez drugie pochodne
- dyfuzja opisywana jest przez pierwsze a konwekcja przez drugie pochodne przestrzenne
dyfuzja i konwekcje opisywane są przez drugie pochodne
- dyfuzja opisywana jest przez pierwsze a konwekcja przez drugie pochodne przestrzenne
Czy wymiary elementu bazowego
- zależą od liczby węzłów interpolacji – pytanie, czy chodzi o 1d a 2d, czy może liniowy a paraboliczny, jeśli to drugie to nie
- są zawsze takie same dla danego typu elementu
zależą od kształtu i wielkości (rzeczywistego) elementu w układzie globalnym
- są zawsze takie same dla danego typu elementu
W sformułowaniu MES opartym na metodzie Bubnov-Galerkina funkcje wagowe i interpolacyjne [3B_31]
są tej samej klasy ciągłości C1
- są tej samej klasy ciągłości C0
- mają różne klasy ciągłości
- są tej samej klasy ciągłości C0
W zagadnieniach dyfuzyjnych
należy stosować model CMM z pełną macierzą pojemności (masy)
można użyć każdego modelu bez wyraźnej różnicy w uzyskiwanych rozwiązaniach
należy stosować model LMM z diagonalną macierzą pojemności (masy)
należy stosować model LMM z diagonalną macierzą pojemności (masy)
Wiggles pojawiające się modelowaniu zagadnień konwekcyjno-dyfuzyjnych to
przestrzenne oscylacje rozwiązania pojawiające się tylko w metodzie objętości skończonych kontrolnych
przestrzenne oscylacje rozwiązania występujące na rzadkich siatkach objętości i elementów skończonych
oscylacje rozwiązania w czasie występujące na rzadkich siatkach objętości i elementów skończonych
przestrzenne oscylacje rozwiązania występujące na rzadkich siatkach objętości i elementów skończonych
Czy symulacja komputerowa rzeczywistości to:
- końcowy układ równań( algebraicznych) modelu dyskretnego
to samo co metoda dyskretyzacji problemu różniczkowego
zbiór węzłowych wartości zmiennych polowych, dla różnych czasów procesu
zbiór węzłowych wartości zmiennych polowych, dla różnych czasów procesu
Różniczkowe równanie typu parabolicznego opisuje [1_21,24]
przepływ w warstwie przyściennej
- nieustalone procesy zachowania pędu dla płynu nielepkiego
nieustalone procesy zachowania pędu dla płynu lepkiego
przepływ w warstwie przyściennej
nieustalone procesy zachowania pędu dla płynu lepkiego
Które ze stwierdzeń jest/są prawdziwe
dyfuzja i konwekcja rozprzestrzeniają się we wszystkich kierunkach
- dyfuzja i konwekcja to formy transportu zachodzące w określonym kierunku
konwekcja to transport w określonym kierunku, zaś dyfuzja rozprzestrzenia się we wszystkich kierunkach
konwekcja to transport w określonym kierunku, zaś dyfuzja rozprzestrzenia się we wszystkich kierunkach
Element bazowy to
- wybrany typ elementu w układzie globalnym (np. czworościenny)
odwzorowany element w lokalnym układzie krzywoliniowym o liczbie węzłów równej liczbie węzłów rzeczywistego elementu (w układzie globalnym)
odwzorowany element w lokalnym układzie krzywoliniowym o liczbie węzłów o jeden większej od stopnia wielomianu interpolacyjnego
odwzorowany element w lokalnym układzie krzywoliniowym o liczbie węzłów równej liczbie węzłów rzeczywistego elementu (w układzie globalnym)
odwzorowany element w lokalnym układzie krzywoliniowym o liczbie węzłów o jeden większej od stopnia wielomianu interpolacyjnego
Dyfuzyjność na granicy dwóch objętości kontrolnych z różnych materiałów najlepiej modelować przez
średnią harmoniczną dyfuzyjności
większą z dwóch wartości dyfuzyjności
interpolację liniową między (tymi dyfuzyjnościami
średnią harmoniczną dyfuzyjności
Schemat Cranka-Nicolsona to
- bezwarunkowo stabilny schemat przy założeniu liniowych zmian wielkości polowej w czasie
bezwarunkowo stabilny schemat przy założeniu parabolicznych zmian wielkości polowej w czasie
warunkowo stabilny schemat kroczenia w czasie przy założeniu liniowych zmian wielkości polowej w czasie
- bezwarunkowo stabilny schemat przy założeniu liniowych zmian wielkości polowej w czasie
Element superpametryczny
ma więcej węzłów interpolacji wielkości polowej niż interpolacji geometrii
ma więcej węzłów interpolacji geometrii niż interpolacji wielkości polowej
ma tyle samo węzłów interpolacji geometrii i wielkości polowej
ma więcej węzłów interpolacji geometrii niż interpolacji wielkości polowej
Sformułowanie słabe w metodzie MES oznacza
całkowy zapis równań MES w którym obniżono rząd pochodnej członu dyfuzyjnego przez wykorzystanie całkowania przez części i twierdzenie Gaussa-Greena
całkowy zapis równań MES, w którym obniżono klasę ciągłości funkcji interpolacyjnych kosztem podniesienia klasy ciągłości funkcji wagowych
całkowy zapis równań MES, w którym obniżono klasę ciągłości funkcji wagowych kosztem podniesienia klasy ciągłości funkcji interpolacyjnych
całkowy zapis równań MES w którym obniżono rząd pochodnej członu dyfuzyjnego przez wykorzystanie całkowania przez części i twierdzenie Gaussa-Greena
całkowy zapis równań MES, w którym obniżono klasę ciągłości funkcji interpolacyjnych kosztem podniesienia klasy ciągłości funkcji wagowych
Metoda pod prąd to
specjalna interpolacja strumienia konwekcyjnego, gdy dominuje konwekcja
jedna z metod całkowania w czasie
technika, która eliminuje oscylacje numeryczne w problemach dominującej konwekcji
specjalna interpolacja strumienia konwekcyjnego, gdy dominuje konwekcja
technika, która eliminuje oscylacje numeryczne w problemach dominującej konwekcji
Poziom przestrzennej aproksymacji w tworzeniu modelu matematycznego jest związany:
max. skala przestrzennego rozpatrywania zjawiska
iloscia wymiarow geometrycznych niezbena do poprawnej analizy zjawiska
zakresem skal przestrznnych rozpatrywanego zjawiska
iloscia wymiarow geometrycznych niezbena do poprawnej analizy zjawiska
Czy prawda jest ze?
Rozniczkowe rownanie typu parabolicznego opisuje nieustalony proces transportu pedu w plynie nielepkim
Rozniczkowe rownanie typu eliptyczngo ma te same zakresy zaleznosci i wplywu
RR typu hiperbolicznego opisuje nieustalony proces transportu energii w plynie lepkim
Rozniczkowe rownanie typu eliptyczngo ma te same zakresy zaleznosci i wplywu

Powiązane tematy

Inne tryby