Fiszki

Mechanika Gruntów 2

Test w formie fiszek Test wiedzy z zakresu mechaniki gruntów na studia.
Ilość pytań: 52 Rozwiązywany: 2673 razy
Idealizacja zależności naprężenie – odkształcenie:
Powinna być poprzedzona starannymi badaniami celem uzyskania rzeczywistej charakterystyki materiałowej badanego ośrodka
Zawsze prowadzi do zwiększenia dokładności wyznaczanych parametrów
Polega na przyjęciu odpowiedniego modelu mechanicznego
Może być przyczyną popełnienie znacznych błędów
Umożliwia przyjęcie (zastosowanie) odpowiedniej teorii obliczeniowej
Powinna być poprzedzona starannymi badaniami celem uzyskania rzeczywistej charakterystyki materiałowej badanego ośrodka
Może być przyczyną popełnienie znacznych błędów
Które z poniższych stwierdzeń jest słuszne:
Ciało Hooke’a jest ciałem liniowo-sprężystym
Ciecz maxwella modeluje zjawisko pełzania czyli spadku naprężenia w czasie przy ustalonej wartości odkształcenia
Ciało sprężysto – plastyczne z umocnieniem modeluje zjawisko podniesienia granicy plastyczności poprzez zdeformowanie plastyczne
Ciecz maxwella modeluje zjawisko relaksacji
Ciało Hooke’a jest ciałem liniowo-sprężystym
Ciecz maxwella modeluje zjawisko relaksacji
Dodatkowe naprężenie ściskające w szkielecie gruntowym od wody kapilarnej:
Ma wartość dodatnią tylko w strefie wody kapilarnej
Jest równe ujemnemu ciśnieniu w wodzie kapilarnej
W strefie poniżej zwierciadła swobodnego jego wartość nie zależy od wysokości podciągania kapilarnego
Jest równe sumie ujemnego ciśnienia w wodzie kapilarnej i ciśnieniu (naprężeniu) od ciężaru wody kapilarnej
W strefie poniżej zwierciadła swobodnego jego wartość jest równa j0 * h0
W strefie poniżej zwierciadła swobodnego jego wartość nie zależy od wysokości podciągania kapilarnego
Jest równe sumie ujemnego ciśnienia w wodzie kapilarnej i ciśnieniu (naprężeniu) od ciężaru wody kapilarnej
Na ciśnienie działające na zewnętrzne ścianki rozpatrywanej bryły gruntu przez która filtruje woda składa się:
Ciśnienie statyczne i strata ciśnienia podczas filtracji
Ciśnienie wyporu i ciśnienie filtracji
Ciśnienie statyczne i ciśnienie filtracji
Ciśnienie statyczne i ciśnienie spływowe
Ciśnienie wyporu i ciśnienie filtracji
Ciśnienie statyczne i ciśnienie filtracji
Opór tarcia zależy od:
Naprężenia efektywnego
Kąta tarcia wewnętrznego
Niejednorodności uziarnienia
Sił kapilarnych wody w porach gruntu
Wodno-koloidalnych wiązań wody błonkowatej
Naprężenia efektywnego
Kąta tarcia wewnętrznego
Niejednorodności uziarnienia
Sił kapilarnych wody w porach gruntu
Wodno-koloidalnych wiązań wody błonkowatej
W którym z wymienionych układów sporządza się krzywą ściśliwości:
ε – log δ
h – δ
h – log t
e – δ
ε – δ
h – δ
e – δ
ε – δ
Które z wymienionych danych pozwalają na obliczenie osiadania konsolidowanej warstwy St po określonym czasie t przy założeniu, że warstwa ma drenaż obustronny a rozkład początkowego nadciśnienia jest równomierny:
t, k, mv, yw, S
U, S
t, cv, S
t, cv, H, S
t, c v, Us, H, S
t, k, mv, yw, S
Naprężeniem nazywamy:
Wartość stosunku siły wewnętrznej działającej na element przekroju ciała do powierzchni tego elementu
Granicę do której dąży iloraz siły wewnętrznej działającej na elementarne pole powierzchni tego pola gdy pole to dąży do zera
Wartość stosunku siły działającej na element przekroju ciała do powierzchni tego elementu
Wartość stosunku siły wewnętrznej działającej na element przekroju ciała do powierzchni tego elementu
Granicę do której dąży iloraz siły wewnętrznej działającej na elementarne pole powierzchni tego pola gdy pole to dąży do zera
Odkształcenie, które może być opisane tylko za pomocą odkształceń liniowych powoduje:
Zmianę objętości i postaci
Dylatację
Tylko zmianę postaci
Tylko zmianę objętości
Zmianę objętości i postaci
Dylatację
Tylko zmianę objętości
Prawa Hooke’a wiążą stan naprężenia i odkształcenia w ośrodku sprężystym w badaniu:
Izotropowego ściskania
Prostego ścinania
Jednoosiowego ściskania w warunkach uniemożliwionej bocznej rozszerzalności
Trójosiowego rozciągania
Prostego ściskania
Izotropowego ściskania
Prostego ścinania
Prostego ściskania
Które z wymienionych czynników wpływają na kształt krzywej naprężenie – odształcenie:
Historia obciążenia
Możliwość drenażu
Ścieżka naprężenia
Wilgotność
Rodzaj obciążenia
Wilgotność
Rodzaj obciążenia
Które z wymienionych parametrów można wyznaczyć na podstawie siatki przepływu:
Prędkość filtracji
Wysokość naporu
Współczynnik filtracji
Wysokość ciśnienia
Spadek hydrauliczny w dowolnym oczku siatki
Prędkość filtracji
Wysokość naporu
Wysokość ciśnienia
Spadek hydrauliczny w dowolnym oczku siatki
Wytrzymałość na ścinanie jest oporem jaki stawia grunt siłom ścinającym:
W płaszczyźnie najniekorzystniejszego działania naprężeń
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
W granicznym stanie ścinania w płaszczyźnie nachylonej pod kątem α= 45O – φ/2
W płaszczyźnie maksymalnych naprężeń stycznych
W płaszczyźnie ścięcia w momencie ścięcia
W płaszczyźnie ścięcia w momencie ścięcia
Z których spośród wymienionych badań można otrzymać parametry charkt. ściśliwość:
Stopniowe obciążanie w warunkach uniemożliwionej bocznej rozszerzalności
Obciążanie płytą sztywną
Stopniowe obciążanie w konsolidometrze z zachowaniem stałej prędkości odkształcenia
Ciągłe obciążanie w konsolidometrze z zachowaniem stałego gradientu ciśnienia porowego
Jednoosiowe ściskanie w warunkach swobodnej bocznej rozszerzalności
Stopniowe obciążanie w warunkach uniemożliwionej bocznej rozszerzalności
Stopniowe obciążanie w konsolidometrze z zachowaniem stałej prędkości odkształcenia
Ciągłe obciążanie w konsolidometrze z zachowaniem stałego gradientu ciśnienia porowego
Nadciśnienie w określonym punkcie konsolidowanej warstwy jest funkcją:
Rzędnej danego punktu, współczynnika filtracji i współczynnika ściśliwości objętościowej
Rzędnej danego punktu i stopnia konsolidacji
Czasu jaki upłynął od mom. zmiany stanu napręż., współcz. Konsol. i miąższ. Konsolid.warstwy
Rzędnej danego punktu i czasu jaki upłynął od momentu zmiany stanu naprężenia
Rzędnej danego punktu, współczynnika filtracji i współczynnika ściśliwości objętościowej
Współczynnik wtórnej ściśliwości:
Wyznaczany jest z krzywej ściśliwości
Opisuje przebieg konsolidacji reologicznej
Dla danego gruntu ma wartość stałą, niezależną od czasu
Jest parametrem konsolidacji pierwotnej
Jedną z metod jego wyznaczania jest metoda Casegrande’a
Opisuje przebieg konsolidacji reologicznej
Naprężenie główne:
To naprężenie normalne działające w płaszczyźnie na której naprężenie styczne k=0
To naprężenie normalne działające w płaszczyźnie na której wektor wypadkowy p=0
W danym stanie naprężenia są równe ekstremalnym wartościom naprężeń normalnych
Są oznaczane symbolami δa, δb, δc
Opisują jednoznacznie stan naprężenia w gruncie
To naprężenie normalne działające w płaszczyźnie na której naprężenie styczne k=0
W danym stanie naprężenia są równe ekstremalnym wartościom naprężeń normalnych
Opisują jednoznacznie stan naprężenia w gruncie
Odkształcenie w dowolnym punkcie obciążonego ciała:
Może dotyczyć zmiany długości prostoliniowego odcinka lub zmiany kąta pomiędzy dwoma odcinkami
Określone jest przez 9 składowych odkształceń elementarnych
Może mieć charakter zmiany objętości, zmiany postaci lub zmiany objętości i postaci
Można zobrazować graficznie za pomocą koła Mohra na podstawie znajomości głównych odkształceń liniowych
Może mieć charakter tylko dystorsji albo tylko dylatacji
Może dotyczyć zmiany długości prostoliniowego odcinka lub zmiany kąta pomiędzy dwoma odcinkami
Może mieć charakter zmiany objętości, zmiany postaci lub zmiany objętości i postaci
Można zobrazować graficznie za pomocą koła Mohra na podstawie znajomości głównych odkształceń liniowych
Odkształcenie objętościowe:
Może wystąpić w badaniu prostego ściskania
Równe jest iloczynowi odkształceń liniowych na trzech wzajemnie prostopadłych kierunkach
W przypadku ciała sprężystego jest proporcjonalne do naprężenia normalnego izotropowego
Jest wynikiem wyłącznie odkształceń liniowych
Równe jest sumie odkształceń liniowych na trzech wzajemnie prostopadłych kierunkach
Jest wynikiem wyłącznie odkształceń liniowych
Równe jest sumie odkształceń liniowych na trzech wzajemnie prostopadłych kierunkach
Współczynnik Poissona:
Zawiera się w przedziale (0,5 – 1)
Dla materiału, który podczas jednoosiowego ściskania nie zmienia objętości jest równy zero
Może być wyznaczone z badania jednoosiowego ściskania w warunkach uniemożliwionej bocznej rozszerzalności
Jest współczynnikiem proporcjonalności pomiędzy naprężeniem stycznym i odształceniem postaciowym
Jest parametrem charakteryzującym ośrodki sprężyste
Dla materiału, który podczas jednoosiowego ściskania nie zmienia objętości jest równy zero
Jest parametrem charakteryzującym ośrodki sprężyste

Powiązane tematy

#mechanikagruntow

Inne tryby