Fiszki

Mechanika gruntów - p.mech.gr

Test w formie fiszek emakarena
Ilość pytań: 53 Rozwiązywany: 3626 razy
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Trzy różne, wzajemnie stykające się koła Mohra
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Największe napręzenie główne w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Ciśnienie porowe w punkcie A
Największe napręzenie główne w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Koło naprężeń Mohra:
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Jest graficznym obrazem stanu naprężenia w punkcie
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Zastosowanej ścieżki naprężenia
Zastosowanego kryterium ścinania
Wartości naprężenia efektywnego
Składu granulometrycznego gruntu
Warunków konsolidacji i drenażu
Wartości naprężenia efektywnego
Składu granulometrycznego gruntu
Warunków konsolidacji i drenażu
Odkształcenie objętościowe jest równe: (?)
Ev =E1 + E2 + E3
Ev= E1 – E2
Ev=E1 * E2 * E3
Ev= delta V/V0
Ev= Ex + Ey + Ez
Ev =E1 + E2 + E3
Ev= delta V/V0
Ev= Ex + Ey + Ez
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Prawo niezależności naprężeń
Uogólnione prawo Hooke’a
Pierwsze prawo Hooke’a
Drugie prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
Uogólnione prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
W badaniu prostego ścinania ma miejsce: (?)
Wyłącznie zmiana objętości
Wyłącznie zmiana postaci
Dystorsja
Odkształcenie czysto objętościowe
Zmiana objętości i postaci
Wyłącznie zmiana postaci
Odkształcenie czysto objętościowe
Na wartość wyporu wody w gruncie wpływa:
Wartość ciśnienia porowego na danej głębokości
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Ciężar objętościowy gruntu
Objętość rozpatrywanej bryły gruntu
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ’ = δ – u
δ = δ’ + u
δ’ = δ - ug
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
δ’ = δ – u
δ = δ’ + u
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
Które z poniższych stwierdzeń jest słuszne:
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie spływowe to:
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Parcie spływowe przypadające na jednostkę objętości gruntu
Ciśnienie spływowe może być przyczyną:
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Spadku naprężeń efektywnych
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Powstania kurzawki
Utraty zdolności do przenoszenia przez grunt obciążeń
Spadku naprężeń efektywnych
Wzrostu naprężeń efektywnych
Przebicia hydraulicznego
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Konsolidacja wstępna
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Pomiar ciśnienia porowego
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Konsolidacja wstępna
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Które z wymienionych parametrów są parametrami ściśliwości
av
Ce
KG
Sigma’p
Mo
av
Mo
Które z poniższych stwierdzeń jest słuszne:
Badanie endometryczne jest jedną z metod typu CL
Dla danego gruntu M0 jest mniejsze od E0
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Laplace’a
Terzaghi’ego
Taylora
Casagrande’a
Jaky
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to: (?)
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym:
Sprężystości podłużnej (E)
Edometryczny ściśliwości pierwotnej (M0)
Sprężystości objętościowej (K)
Ścinania (D)
Odkształcenia płaskiego (G)
Sprężystości podłużnej (E)
Sprężystości objętościowej (K)

Powiązane tematy

#mechanikagruntow

Inne tryby