Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Ciśnienie porowe w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Największe napręzenie główne w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Ciśnienie porowe w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Dewiator naprężenia w punkcie A
Największe napręzenie główne w punkcie A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Koło naprężeń Mohra:
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Jest graficznym obrazem stanu naprężenia w punkcie
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Zastosowanej ścieżki naprężenia
Składu granulometrycznego gruntu
Zastosowanego kryterium ścinania
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Składu granulometrycznego gruntu
Odkształcenie objętościowe jest równe: (?)
Ev= Ex + Ey + Ez
Ev =E1 + E2 + E3
Ev= delta V/V0
Ev=E1 * E2 * E3
Ev= E1 – E2
Ev= Ex + Ey + Ez
Ev =E1 + E2 + E3
Ev= delta V/V0
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Uogólnione prawo Hooke’a
Pierwsze prawo Hooke’a
Prawo niezależności naprężeń
Prawo sprężystości dla ciał izotropowych
Drugie prawo Hooke’a
Uogólnione prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
W badaniu prostego ścinania ma miejsce: (?)
Odkształcenie czysto objętościowe
Wyłącznie zmiana objętości
Wyłącznie zmiana postaci
Zmiana objętości i postaci
Dystorsja
Odkształcenie czysto objętościowe
Wyłącznie zmiana postaci
Na wartość wyporu wody w gruncie wpływa:
Objętość rozpatrywanej bryły gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Wartość ciśnienia porowego na danej głębokości
Ciężar objętościowy gruntu
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ’ = δ – u
δ’ = δ - ug
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu 11
δ’ = (δ – ug) + ϗ (ug –u)
Które z poniższych stwierdzeń jest słuszne:
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Ciśnienie spływowe to:
Parcie spływowe przypadające na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe może być przyczyną:
Spadku naprężeń efektywnych
Przebicia hydraulicznego
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Powstania kurzawki
Spadku naprężeń efektywnych
Przebicia hydraulicznego
Utraty zdolności do przenoszenia przez grunt obciążeń
Wzrostu naprężeń efektywnych
Powstania kurzawki
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Konsolidacja wstępna
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Pomiar ciśnienia porowego
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Które z wymienionych parametrów są parametrami ściśliwości
KG
Mo
Ce
av
Sigma’p
Mo
av
Które z poniższych stwierdzeń jest słuszne:
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Dla danego gruntu M0 jest mniejsze od E0
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Badanie endometryczne jest jedną z metod typu CL
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Taylora
Jaky
Laplace’a
Casagrande’a
Terzaghi’ego
Casagrande’a
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Tensor naprężenia w punkcie M
Składowe stanu odkształcenia to: (?)
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia liniowe i 3 odkształcenia objętościowe
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym: