Fiszki

Mechanika gruntów - p.mech.gr

Test w formie fiszek emakarena
Ilość pytań: 53 Rozwiązywany: 2315 razy
Idealizacja zależności naprężenie – odkształcenie: (?)
Umożliwia przyjęcie (zastosowanie) odpowiedniej teorii obliczeniowej
Może być przyczyną popełnienie znacznych błędów
Powinna być poprzedzona starannymi badaniami celem uzyskania rzeczywistej charakterystyki materiałowej badanego ośrodka
Polega na przyjęciu odpowiedniego modelu mechanicznego
Zawsze prowadzi do zwiększenia dokładności wyznaczanych parametrów
Umożliwia przyjęcie (zastosowanie) odpowiedniej teorii obliczeniowej
Może być przyczyną popełnienie znacznych błędów
Powinna być poprzedzona starannymi badaniami celem uzyskania rzeczywistej charakterystyki materiałowej badanego ośrodka
Polega na przyjęciu odpowiedniego modelu mechanicznego
Które z poniższych stwierdzeń jest słuszne: (?)
Ciecz maxwella modeluje zjawisko pełzania czyli spadku naprężenia w czasie przy ustalonej wartości odkształcenia
Ciecz maxwella modeluje zjawisko relaksacji
Ciało Hooke’a jest ciałem liniowo-sprężystym
Ciało sprężysto – plastyczne z umocnieniem modeluje zjawisko podniesienia granicy plastyczności poprzez zdeformowanie plastyczne
Ciecz maxwella modeluje zjawisko relaksacji
Ciało Hooke’a jest ciałem liniowo-sprężystym
Dodatkowe naprężenie ściskające w szkielecie gruntowym od wody kapilarnej:
W strefie poniżej zwierciadła swobodnego jego wartość jest równa j0 * h0
W strefie poniżej zwierciadła swobodnego jego wartość nie zależy od wysokości podciągania kapilarnego
Jest równe sumie ujemnego ciśnienia w wodzie kapilarnej i ciśnieniu (naprężeniu) od ciężaru wody kapilarnej
Jest równe ujemnemu ciśnieniu w wodzie kapilarne
Ma wartość dodatnią tylko w strefie wody kapilarnej
Jest równe sumie ujemnego ciśnienia w wodzie kapilarnej i ciśnieniu (naprężeniu) od ciężaru wody kapilarnej
Na ciśnienie działające na zewnętrzne ścianki rozpatrywanej bryły gruntu przez która filtruje woda składa się:
Ciśnienie statyczne i strata ciśnienia podczas filtracji
Ciśnienie statyczne i ciśnienie spływowe
Ciśnienie statyczne i ciśnienie filtracji
Ciśnienie wyporu i ciśnienie filtracji
Ciśnienie statyczne i strata ciśnienia podczas filtracji
Ciśnienie statyczne i ciśnienie filtracji
Ciśnienie wyporu i ciśnienie filtracji
Opór tarcia zależy od (?)
Niejednorodności uziarnienia
Naprężenia efektywnego
Sił kapilarnych wody w porach gruntu
Kąta tarcia wewnętrznego
Wodno-koloidalnych wiązań wody błonkowatej
Naprężenia efektywnego
Kąta tarcia wewnętrznego
W którym z wymienionych układów sporządza się krzywą ściśliwości:
ε – log δ
h – δ
e – δ
ε – δ
h – log t
h – δ
e – δ
ε – δ
Które z wymienionych danych pozwalają na obliczenie osiadania konsolidowanej warstwy St po określonym czasie t przy założeniu, że warstwa ma drenaż obustronny a rozkład początkowego nadciśnienia jest równomierny: (?)
t, cv, H, S
t, k, mv, yw, S
U, S
t, c v, Us, H, S
t, cv, S
t, k, mv, yw, S
t, c v, Us, H, S
Naprężeniem nazywamy:
Wartość stosunku siły wewnętrznej działającej na element przekroju ciała do powierzchni tego elementu
Wartość stosunku siły działającej na element przekroju ciała do powierzchni tego elementu
Granicę do której dąży iloraz siły wewnętrznej działającej na elementarne pole powierzchni tego pola gdy pole to dąży do zera
Wartość stosunku siły wewnętrznej działającej na element przekroju ciała do powierzchni tego elementu
Granicę do której dąży iloraz siły wewnętrznej działającej na elementarne pole powierzchni tego pola gdy pole to dąży do zera
Odkształcenie, które może być opisane tylko za pomocą odkształceń liniowych powoduje:
Dylatację
Zmianę objętości i postaci
Tylko zmianę objętości
Tylko zmianę postaci
Zmianę objętości i postaci
Prawa Hooke’a wiążą stan naprężenia i odkształcenia w ośrodku sprężystym w badaniu:
Jednoosiowego ściskania w warunkach uniemożliwionej bocznej rozszerzalności
Trójosiowego rozciągania
Izotropowego ściskania
Prostego ścinania
Prostego ściskania
Prostego ścinania
Prostego ściskania
Które z wymienionych czynników wpływają na kształt krzywej naprężenie – odształcenie: (?)
Wilgotność
Ścieżka naprężenia
Możliwość drenażu
Rodzaj obciążenia
Historia obciążenia
Wilgotność
Rodzaj obciążenia
Historia obciążenia
Które z wymienionych parametrów można wyznaczyć na podstawie siatki przepływu(?????!)
Prędkość filtracji
Wysokość ciśnienia
Spadek hydrauliczny w dowolnym oczku siatki
Wysokość naporu
Współczynnik filtracji
Prędkość filtracji
Wysokość ciśnienia
Spadek hydrauliczny w dowolnym oczku siatki
Wysokość naporu
Wytrzymałość na ścinanie jest oporem jaki stawia grunt siłom ścinającym:
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
W płaszczyźnie maksymalnych naprężeń stycznych
W płaszczyźnie najniekorzystniejszego działania naprężeń
W płaszczyźnie ścięcia w momencie ścięcia
W granicznym stanie ścinania w płaszczyźnie nachylonej pod kątem α= 45O – φ/2
W płaszczyźnie najniekorzystniejszego działania naprężeń w momencie ścięcia
W płaszczyźnie najniekorzystniejszego działania naprężeń
Z których spośród wymienionych badań można otrzymać parametry charakteryzujące ściśliwość: (?)
Jednoosiowe ściskanie w warunkach swobodnej bocznej rozszerzalności
Obciążanie płytą sztywną
Stopniowe obciążanie w konsolidometrze z zachowaniem stałej prędkości odkształcenia
Stopniowe obciążanie w warunkach uniemożliwionej bocznej rozszerzalności
Ciągłe obciążanie w konsolidometrze z zachowaniem stałego gradientu ciśnienia porowego
Obciążanie płytą sztywną
Stopniowe obciążanie w konsolidometrze z zachowaniem stałej prędkości odkształcenia
Stopniowe obciążanie w warunkach uniemożliwionej bocznej rozszerzalności
Ciągłe obciążanie w konsolidometrze z zachowaniem stałego gradientu ciśnienia porowego
Nadciśnienie w określonym punkcie konsolidowanej warstwy jest funkcją: (?)
Rzędnej danego punktu i stopnia konsolidacji
Rzędnej danego punktu i czasu jaki upłynął od momentu zmiany stanu naprężenia
Rzędnej danego punktu, współczynnika filtracji i współczynnika ściśliwości objętościowej
Czasu jaki upłynął od momentu zmiany stanu naprężenia, współczynnika konsolidacji i miąższości konsolidowanej warstwy
Rzędnej danego punktu, współczynnika filtracji i współczynnika ściśliwości objętościowej
Współczynnik wtórnej ściśliwości (?)
Jest parametrem konsolidacji pierwotnej
Dla danego gruntu ma wartość stałą, niezależną od czasu
Opisuje przebieg konsolidacji reologicznej
Wyznaczany jest z krzywej ściśliwości
Jedną z metod jego wyznaczania jest metoda Casegrande’a
Opisuje przebieg konsolidacji reologicznej
Naprężenie główne:
To naprężenie normalne działające w płaszczyźnie na której naprężenie styczne k=0
To naprężenie normalne działające w płaszczyźnie na której wektor wypadkowy p=0
Opisują jednoznacznie stan naprężenia w gruncie
W danym stanie naprężenia są równe ekstremalnym wartościom naprężeń normalnyc
Są oznaczane symbolami δa, δb, δc
To naprężenie normalne działające w płaszczyźnie na której naprężenie styczne k=0
Opisują jednoznacznie stan naprężenia w gruncie
W danym stanie naprężenia są równe ekstremalnym wartościom naprężeń normalnyc
Odkształcenie w dowolnym puncie obciążonego ciała(??)
Określone jest przez 9 składowych odkształceń elementarnych
Można zobrazować graficznie za pomocą koła Mohra na podstawie znajomości głównych odkształceń linowych
Może mieć charakter tylko dystorsji albo tylko dylatacji
Może dotyczyć zmiany długości prostoliniowego odcinka lub zmiany kąta pomiędzy dwoma odcinkami
Może mieć charakter zmiany objętości, zmiany postaci lub zmiany objętości i postaci
Można zobrazować graficznie za pomocą koła Mohra na podstawie znajomości głównych odkształceń linowych
Może mieć charakter tylko dystorsji albo tylko dylatacji
Może dotyczyć zmiany długości prostoliniowego odcinka lub zmiany kąta pomiędzy dwoma odcinkami
Może mieć charakter zmiany objętości, zmiany postaci lub zmiany objętości i postaci
Odształcenie objętościowe: (?)
Równe jest sumie odkształceń liniowych na trzech wzajemnie prostopadłych kierunkach
Może wystąpić w badaniu prostego ściskania
Równe jest iloczynowi odkształceń liniowych na trzech wzajemnie prostopadłych kierunkach
W przypadku ciała sprężystego jest proporcjonalne do naprężenia normalnego izotropowego
Jest wynikiem wyłącznie odkształceń liniowych
Równe jest sumie odkształceń liniowych na trzech wzajemnie prostopadłych kierunkach
Może wystąpić w badaniu prostego ściskania
W przypadku ciała sprężystego jest proporcjonalne do naprężenia normalnego izotropowego
Jest wynikiem wyłącznie odkształceń liniowych
Współczynnik Poissona
Dla materiału, który podczas jednoosiowego ściskania nie zmienia objętości jest równy zero
Jest współczynnikiem proporcjonalności pomiędzy naprężeniem stycznym i odształceniem postaciowym
Zawiera się w przedziale (0,5 – 1)
Jest parametrem charakteryzującym ośrodki sprężyste
Może być wyznaczone z badania jednoosiowego ściskania w warunkach uniemożliwionej bocznej rozszerzalności
Jest parametrem charakteryzującym ośrodki sprężyste

Powiązane tematy

#mechanikagruntow

Inne tryby