Fiszki

Mechanik gruntów i skał

Test w formie fiszek Mechanik gruntów i skał
Ilość pytań: 52 Rozwiązywany: 2298 razy
Konstrukcje których autorów służą do wyznaczania naprężenia prekonsolidacji:
Casagrande’a
Jaky
Taylora
Laplace’a
Terzaghi’ego
Casagrande’a
Graficznym obrazem osiowo-symetrycznego stanu naprężenia w punkcie są:
Punkt o współrzędnych (δ1 , δ2 = δ3 )
Trzy różne, wzajemnie stykające się koła Mohra
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 oraz ε2=δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1 i δ2
Jedno koło, którego odcięte punktów przecięcia z osią sigma są równe δ1=δ2 oraz δ3
Z kół Mohra naprężeń całkowitych i efektywnych obrazujących stan naprężenia w punkcie A podłoża gruntowego można wyznaczyć:
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Naprężenia styczne na płaszczyznach dwusiecznych względem kierunków naprężeń głównych
Dewiator naprężenia w punkcie A
Największe napręzenie główne w punkcie A
Ciśnienie porowe w punkcie A
Naprężenia normalne na płaszczyznach przechodzących przez punkt A
Największe napręzenie główne w punkcie A
Koło odkształceń Mohra opisane symbolem cos (2,n) – 0 przedstawia:
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach o normalnej prostopadłej do osi 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Stan odkształcenia na wszystkich płaszczyznach przecinających oś 2
Stan odkształcenia na wszystkich płaszczyznach przechodzących przez oś 2
Koło naprężeń Mohra:
Przedstawia jeden stan naprężenia na jednej płaszczyźnie
Jest graficznym obrazem stanu naprężenia w punkcie
Dla cylindrycznego stanu napręzenia sprowadza się do punktu
Ma środek w punkcie o współrzędnych (δ1 – δ3 /2, 0)
Przecina oś sigma w punktach odpowiadających maksymalnym naprężeniom stycznym
Jest graficznym obrazem stanu naprężenia w punkcie
Przy założeniu, zgodnie z teorią Coulomba-Mohra, liniowej zależności oporu na ścianie od naprężenia normalnego parametry wytrzymałości na ścianie będą zależeć od:
Wartości naprężenia efektywnego
Zastosowanej ścieżki naprężenia
Warunków konsolidacji i drenażu
Zastosowanego kryterium ścinania
Składu granulometrycznego gruntu
Wartości naprężenia efektywnego
Warunków konsolidacji i drenażu
Składu granulometrycznego gruntu
Odkształcenie objętościowe jest równe:
Ev= delta V/V0
Ev =E1 + E2 + E3
Ev=E1 * E2 * E3
Ev= Ex + Ey + Ez
Ev= E1 – E2
Ev= delta V/V0
Ev =E1 + E2 + E3
Ev= Ex + Ey + Ez
Które z praw można zastosować do opisu zależności pomiędzy stanem naprężenia i odkształcenia dla przypadku przestrzennego stanu naprężenia:
Pierwsze prawo Hooke’a
Uogólnione prawo Hooke’a
Drugie prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
Prawo niezależności naprężeń
Uogólnione prawo Hooke’a
Prawo sprężystości dla ciał izotropowych
W badaniu prostego ścinania ma miejsce:
Wyłącznie zmiana objętości
Odkształcenie czysto objętościowe
Zmiana objętości i postaci
Wyłącznie zmiana postaci
Dystorsja
Wyłącznie zmiana postaci
Dystorsja
Na wartość wyporu wody w gruncie wpływa:
Wartość ciśnienia porowego na danej głębokości
Głębokość zalegania rozpatrywanej bryły gruntu poniżej swobodnego zwierciadłą wody
Objętość rozpatrywanej bryły gruntu
Ciężar objętościowy gruntu
Miąższość strefy wody kapilarnej ponad swobodnym zwierciadłęm wody
Objętość rozpatrywanej bryły gruntu
Zasady naprężeń efektywnych Terzaghi’ego ma postać:
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
δ’ = δ - ug
δ’ = (δ – ug) + ϗ (ug –u)
δ’ = δ – u
δ = δ’ + u
δ’ = δ– w przypadku gdy nadciśnienie w porach grutu uległo całkowitemu rozproszeniu
Które z poniższych stwierdzeń jest słuszne:
Ciśnienie porowe jest tą cześcią naprężęń efektywnych które przenosi woda
Dla dowolnego punktu podłoża koło Mohra naprężeń efektywnych zawsze położone jest na lewo od koła naprężeń całkowitych
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Naprężenie efektywne może zmienić się w czasie nawet wówczas gdy nie zmienia się naprężenie całkowite
Naprężenia efektywne to naprężenia przenoszone wyłącznie przez styki szkieletu gruntowego
Parametry fizyczne i mechaniczne zależą od naprężeń efektywnych
Ciśnienie spływowe to:
Strata ciśnienia filtracji przypadająca na jednostkę objętości gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Siła masowa równa iloczynowi spadku hydraulicznego i ciężaru objętościowego gruntu
Parcie spływowe przypadające na jednostkę objętości gruntu
Siła masowa wywołana filtrującą wodą
Strata ciśnienia filtracji przypadająca na jednostkę drogi filtracji
Ciśnienie spływowe może być przyczyną:
Wzrostu naprężeń efektywnych
Powstania kurzawki
Przebicia hydraulicznego
Utraty zdolności do przenoszenia przez grunt obciążeń
Spadku naprężeń efektywnych
Wzrostu naprężeń efektywnych
Powstania kurzawki
Przebicia hydraulicznego
Utraty zdolności do przenoszenia przez grunt obciążeń
Spadku naprężeń efektywnych
Który z wymienionych wymogów musi być spełniony w badaniu metodą R:
Powolne przykładanie obciążeń w fazie ścinania tak aby w każdym momencie u =0
Pomiar ciśnienia porowego
Utrzymanie stałej wartości ciśnienia porowego w fazie ścinania
Konsolidacja wstępna
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Konsolidacja wstępna
Umożliwiony odpływ wody przynajmniej z jednej powierzchni próbki w fazie ściania
Które z wymienionych parametrów są parametrami ściśliwości:
Ce
KG
Sigma’p
Mo
av
Mo
av
Które z poniższych stwierdzeń jest słuszne:
Badanie endometryczne jest jedną z metod typu CL
Krzywa ściśliwości sporządzana jest na układzie h - sigma’ lub h-t
Dla danego gruntu M0 jest mniejsze od E0
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Parametr Cc dla zakresu naprężeń mniejszych od sigma’p ma wartość większą niż dla zakresu naprężeń większych od sigma’p
Ściśliwość to zdolność gruntu do zmiany objętości w wyniku przyłożonego obciążenia lub zmiany wilgotności
Stan naprężenia w punkcie M obciążonego ciała określają w sposób jednoznaczny:
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Wektor naprężenia w punkcie M przekroju płaszczyzną o normalnej n
Tensor naprężenia w punkcie M
Naprężenia główne w tym punkcie
Składowe stanu odkształcenia to:
3 odkształcenia liniowe i 3 odkształcenia objętościowe
3 odkształcenia liniowe i 6 odkształceń postaciowych
3 odkształcenia główne i 3 odkształcenia liniowe ???
3 odkształcenia główne i 3 odkształcenia postaciowe
3 odkształcenia główne i 3 odkształcenia liniowe ???
Który z modułów wiąże stan naprężenia i odkształcenia w ośrodku sprężystym:
Sprężystości objętościowej (K)
Edometryczny ściśliwości pierwotnej (M0)
Odkształcenia płaskiego (G)
Ścinania (D)
Sprężystości podłużnej (E)
Sprężystości objętościowej (K)
Edometryczny ściśliwości pierwotnej (M0)
Odkształcenia płaskiego (G)
Ścinania (D)
Sprężystości podłużnej (E)

Powiązane tematy

#mechanikagruntow #mechanikaskal

Inne tryby